• 0 Posts
  • 11 Comments
Joined 1 year ago
cake
Cake day: July 1st, 2023

help-circle
  • Haskell

    Merry Christmas!

    {-# LANGUAGE OverloadedStrings #-}
    
    module Main where
    
    import Data.Either
    import Data.Text hiding (all, head, zipWith)
    import Data.Text qualified as T
    import Data.Text.IO as TIO
    
    type Pins = [Int]
    
    toKeyLock :: [Text] -> Either Pins Pins
    toKeyLock v = (if T.head (head v) == '#' then Left else Right) $ fmap (pred . count "#") v
    
    solve keys locks = sum [1 | k <- keys, l <- locks, fit k l]
      where
        fit a b = all (<= 5) $ zipWith (+) a b
    
    main = TIO.getContents >>= print . uncurry solve . partitionEithers . fmap (toKeyLock . transpose . T.lines) . splitOn "\n\n"
    

  • Haskell

    For part2 I compared the bits in the solution of part1 with the sum of x and y. With that, I could check the bits that did not match in a graphviz diagram and work from there.

    code
    import Control.Arrow
    import Control.Monad.RWS
    import Data.Bits (shiftL)
    import Data.Char (digitToInt)
    import Data.Functor
    import Data.List
    import Data.Map qualified as M
    import Data.Tuple
    import Text.ParserCombinators.ReadP hiding (get)
    import Text.ParserCombinators.ReadP qualified as ReadP
    
    type Cable = String
    data Connection = And Cable Cable | Or Cable Cable | Xor Cable Cable deriving (Show)
    
    cable = count 3 ReadP.get
    eol = char '\n'
    initial :: ReadP (M.Map Cable Bool)
    initial = M.fromList <$> endBy ((,) <$> cable <*> (string ": " *> (toEnum . digitToInt <$> ReadP.get))) eol
    wires = M.fromList <$> endBy wire eol
    
    wire = do
        a <- cable <* char ' '
        op <- choice [string "AND" $> And, string "OR" $> Or, string "XOR" $> Xor]
        b <- char ' ' *> cable
        c <- string " -> " *> cable
        return (c, op a b)
    
    parse = fst . last . readP_to_S ((,) <$> initial <*> (eol *> wires <* eof))
    
    type Problem = RWS (M.Map Cable Connection) () (M.Map Cable Bool)
    
    getConnection :: Connection -> Problem Bool
    getConnection (And a b) = (&&) <$> getWire a <*> getWire b
    getConnection (Or a b) = (||) <$> getWire a <*> getWire b
    getConnection (Xor a b) = xor <$> getWire a <*> getWire b
    
    xor True False = True
    xor False True = True
    xor _ _ = False
    
    getWire :: Cable -> Problem Bool
    getWire cable = do
        let computed = do
                a <- asks (M.! cable) >>= getConnection
                modify (M.insert cable a)
                return a
        gets (M.!? cable) >>= maybe computed return
    
    fromBin :: [Bool] -> Int
    fromBin = sum . fmap fst . filter snd . zip (iterate (`shiftL` 1) 1)
    
    toBin :: Int -> [Bool]
    toBin = unfoldr (\v -> if v == 0 then Nothing else Just (first (== 1) (swap (divMod v 2))))
    
    part1 initial wiring = fst $ evalRWS (mapM getWire zs) wiring initial
      where
        zs = filter ((== 'z') . head) . sort $ M.keys wiring
    
    part2 initial wiring = fmap fst . filter snd $ zip [0..] (zipWith (/=) p1 expect)
      where
        xs = fromBin . fmap (initial M.!) . filter ((== 'x') . head) $ sort $ M.keys initial
        ys = fromBin . fmap (initial M.!) . filter ((== 'y') . head) $ sort $ M.keys initial
        zs = filter ((== 'z') . head) . sort $ M.keys wiring
    
        p1 = part1 initial wiring
        expect = toBin $ xs + ys
    
    main = getContents >>= print . (fromBin . uncurry part1 &&& uncurry part2) . parse
    

  • Haskell

    solution
    import Control.Arrow
    import Data.Bits
    import Data.List
    import qualified Data.Map as M
    
    parse = fmap (secretNums . read) . lines
    
    secretNums :: Int -> [Int]
    secretNums = take 2001 . iterate (step1 >>> step2 >>> step3)
     where
      step1 n = ((n `shiftL` 06) `xor` n) .&. 0xFFFFFF
      step2 n = ((n `shiftR` 05) `xor` n) .&. 0xFFFFFF
      step3 n = ((n `shiftL` 11) `xor` n) .&. 0xFFFFFF
    
    part1 = sum . fmap last
    part2 = maximum . M.elems . M.unionsWith (+) . fmap (deltas . fmap (`mod` 10))
    
    deltas l = M.fromListWith (\n p -> p) $ flip zip (drop 4 l) $ zip4 diffs (tail diffs) (drop 2 diffs) (drop 3 diffs)
     where
      diffs = zipWith (-) (tail l) l
    
    main = getContents >>= print . (part1 &&& part2) . parse
    

  • Haskell

    solution
    import Control.Arrow
    import Data.Array.Unboxed
    import Data.Functor
    import Data.List
    import Data.Map qualified as M
    import Data.Set qualified as S
    
    type Pos = (Int, Int)
    type Board = Array Pos Char
    type Path = M.Map Pos Int
    
    parse board = listArray ((1, 1), (length l, length $ head l)) (concat l)
      where
        l = lines board
    
    moves :: Pos -> [Pos]
    moves p = [first succ p, first pred p, second succ p, second pred p]
    
    getOrigin :: Board -> Maybe Pos
    getOrigin = fmap fst . find ((== 'S') . snd) . assocs
    
    getPath :: Board -> Pos -> [Pos]
    getPath board p
        | not $ inRange (bounds board) p = []
        | board ! p == 'E' = [p]
        | board ! p == '#' = []
        | otherwise = p : (moves p >>= getPath (board // [(p, '#')]))
    
    taxiCab (xa, ya) (xb, yb) = abs (xa - xb) + abs (ya - yb)
    
    solve dist board = do
        path <- M.fromList . flip zip [1 ..] <$> (getOrigin board <&> getPath board)
        let positions = M.keys path
            jumps = [ (path M.! a) - (path M.! b) - d | a <- positions, b <- positions, d <- [taxiCab a b], d <= dist]
        return $ length $ filter (>=100) jumps
    
    main = getContents >>= print . (solve 2 &&& solve 20) . parse
    

  • Haskell

    solution
    {-# LANGUAGE LambdaCase #-}
    
    module Main where
    
    import Control.Arrow
    import Control.Monad.State
    import Data.Char
    import Data.List
    import Data.Map qualified as M
    import Data.Monoid
    import Text.ParserCombinators.ReadP
    
    parse = fst . last . readP_to_S ((,) <$> (patterns <* eol <* eol) <*> designs)
      where
        eol = char '\n'
        patterns = sepBy word (string ", ")
        designs = endBy word eol
        word = munch1 isLetter
    
    part1 patterns = length . filter (valid patterns)
    part2 patterns = getSum . combinations patterns
    
    dropPrefix = drop . length
    
    valid :: [String] -> String -> Bool
    valid patterns design = go design
      where
        go "" = True
        go design = case filter (`isPrefixOf` design) patterns of
            [] -> False
            l -> any (go . (`dropPrefix` design)) l
    
    combinations :: [String] -> [String] -> Sum Int
    combinations patterns designs = evalState (fmap mconcat . mapM go $ designs) mempty
      where
        go "" = return $ Sum 1
        go design =
            gets (M.lookup design) >>= \case
                Just c -> return c
                Nothing -> case filter (`isPrefixOf` design) patterns of
                    [] -> return $ Sum 0
                    l -> do
                        res <- mconcat <$> mapM (go . (`dropPrefix` design)) l
                        modify (M.insert design res)
                        return res
    
    main = getContents >>= print . (uncurry part1 &&& uncurry part2) . parse
    

  • Haskell

    solution
    import Control.Arrow
    import Control.Monad
    import Control.Monad.RWS
    import Control.Monad.Trans.Maybe
    import Data.Array (inRange)
    import Data.Char
    import Data.Set qualified as S
    import Text.ParserCombinators.ReadP hiding (get)
    
    parse = fst . last . readP_to_S (endBy ((,) <$> num <*> (char ',' *> num)) $ char '\n')
     where
      num = read <$> munch1 isDigit
    
    bounds = ((0, 0), (70, 70))
    
    bfs :: MaybeT (RWS (S.Set (Int, Int)) () (S.Set (Int, Int), [(Int, (Int, Int))])) Int
    bfs = do
      (seen, (c, x) : xs) <- get
      modify . second $ const xs
      isCorrupt <- asks (S.member x)
    
      when (not (x `S.member` seen) && not isCorrupt && inRange bounds x) $
        modify (S.insert x *** (++ ((succ c,) <$> neighbors x)))
    
      if x == snd bounds
        then return c
        else bfs
    
    neighbors (x, y) = [(succ x, y), (pred x, y), (x, succ y), (x, pred y)]
    
    findPath = fst . flip (evalRWS (runMaybeT bfs)) (mempty, [(0, (0, 0))]) . S.fromList
    
    part1 = findPath . take 1024
    
    search corrupt = go 0 (length corrupt)
     where
      go l r = case (findPath $ take (pred m) corrupt, findPath $ take m corrupt) of
        (Just _, Just _) -> go m r
        (Just _, Nothing) -> Just $ pred m
        (Nothing, Nothing) -> go l m
       where
        m = (l + r) `div` 2
    
    part2 = liftM2 fmap (!!) search
    
    main = getContents >>= print . (part1 &&& part2) . parse
    

  • Haskell

    code
    import Control.Arrow
    import Control.Monad
    import Control.Monad.RWS
    import Control.Monad.Trans.Maybe
    import Data.Array.Unboxed
    import Data.List
    import Data.Map qualified as M
    import Data.Maybe
    import Data.Set qualified as S
    
    data Dir = N | S | W | E deriving (Show, Eq, Ord)
    type Maze = UArray Pos Char
    type Pos = (Int, Int)
    type Node = (Pos, Dir)
    type CostNode = (Int, Node)
    type Problem = RWS Maze [(Node, [Node])] (M.Map Node Int, S.Set (CostNode, Maybe Node))
    
    parse = toMaze . lines
    
    toMaze :: [String] -> Maze
    toMaze b = listArray ((0, 0), (n - 1, m - 1)) $ concat b
      where
        n = length b
        m = length $ head b
    
    next :: Int -> (Pos, Dir) -> Problem [CostNode]
    next c (p, d) = do
        m <- ask
    
        let straigth = fmap ((1,) . (,d)) . filter ((/= '#') . (m !)) . return $ move d p
            turn = (1000,) . (p,) <$> rot d
    
        return $ first (+ c) <$> straigth ++ turn
    
    move N = first (subtract 1)
    move S = first (+ 1)
    move W = second (subtract 1)
    move E = second (+ 1)
    
    rot d
        | d `elem` [N, S] = [E, W]
        | otherwise = [N, S]
    
    dijkstra :: MaybeT Problem ()
    dijkstra = do
        m <- ask
        visited <- gets fst
        Just (((cost, vertex@(p, _)), father), queue) <- gets (S.minView . snd)
    
        let (prevCost, visited') = M.insertLookupWithKey (\_ a _ -> a) vertex cost visited
    
        case prevCost of
            Nothing -> do
                queue' <- lift $ foldr S.insert queue <$> (fmap (,Just vertex) <$> next cost vertex)
                put (visited', queue')
                tell [(vertex, maybeToList father)]
            Just c -> do
                if c == cost
                    then tell [(vertex, maybeToList father)]
                    else guard $ m ! p /= 'E'
                put (visited, queue)
        dijkstra
    
    solve b = do
        start <- getStart b
        end <- getEnd b
        let ((m, _), w) = execRWS (runMaybeT dijkstra) b (M.empty, S.singleton (start, Nothing))
            parents = M.fromListWith (++) w
            endDirs = (end,) <$> [N, S, E, W]
            min = minimum $ mapMaybe (`M.lookup` m) endDirs
            ends = filter ((== Just min) . (`M.lookup` m)) endDirs
            part2 =
                S.size . S.fromList . fmap fst . concat . takeWhile (not . null) $
                    iterate (>>= flip (M.findWithDefault []) parents) ends
        return (min, part2)
    
    getStart :: Maze -> Maybe CostNode
    getStart = fmap ((0,) . (,E) . fst) . find ((== 'S') . snd) . assocs
    
    getEnd :: Maze -> Maybe Pos
    getEnd = fmap fst . find ((== 'E') . snd) . assocs
    
    main = getContents >>= print . solve . parse
    

  • Haskell

    Spent a lot of time trying to find symmetric quadrants. In the end made an interactive visualization and found that a weird pattern appeared on iterations (27 + 101k) and (75 + 103k’). Put those congruences in an online Chinese remainder theorem calculator and go to the answer: x8006 (mod 101*103)

    import Data.Bifunctor
    import Data.Char
    import qualified Data.Set as S
    import Data.Functor
    import Data.List
    import Control.Monad
    import Text.ParserCombinators.ReadP
    import Data.IORef
    
    bounds = (101, 103)
    
    parseInt :: ReadP Int
    parseInt = (*) <$> option 1 (char '-' $> (-1)) <*> (read <$> munch1 isDigit)
    parseTuple = (,) <$> parseInt <*> (char ',' *> parseInt)
    parseRow = (,) <$> (string "p=" *> parseTuple) <*> (string " v=" *> parseTuple)
    parse = fst . last . readP_to_S (endBy parseRow (char '\n'))
    
    move t (x, y) (vx, vy) = bimap (mod (x + vx * t)) (mod (y + vy * t)) bounds
    
    getQuadrant :: (Int, Int) -> Int
    getQuadrant (x, y)
        | x == mx || y == my = 0
        | otherwise = case (x > mx, y > my) of
            (True, True) -> 1
            (True, False) -> 2
            (False, True) -> 3
            (False, False) -> 4
      where
        (mx, my) = bimap (`div` 2) (`div` 2) bounds
    
    step (x, y) (vx, vy) = (,(vx, vy)) $ bimap (mod (x + vx)) (mod (y + vy)) bounds
    
    main = do
        p <- parse <$> readFile "input14"
    
        print . product . fmap length . group . sort . filter (/=0) . fmap (getQuadrant . uncurry (move 100)) $ p
    
        let l = iterate (fmap (uncurry step)) p
    
        current <- newIORef 0
        actions <- lines <$> getContents
        forM_ actions $ \a -> do
            case a of
                "" -> modifyIORef current (+1)
                "+" -> modifyIORef current (+1)
                "-" -> modifyIORef current (subtract 1)
                n -> writeIORef current (read n)
            pos <- readIORef current
            putStr "\ESC[2J" -- clear screen
            print pos
            visualize $ fst <$> l !! pos
    
    visualize :: [(Int, Int)] -> IO ()
    visualize pos = do
        let p = S.fromList pos
        forM_ [1..(snd bounds)] $ \y -> do
            forM_ [1..(fst bounds)] $ \x -> do
                putChar $ if S.member (x, y) p then '*' else '.'
            putChar '\n'
    

  • Haskell

    import Data.Monoid
    import Control.Arrow
    
    data Tree v = Tree (Tree v) v (Tree v)
    
    -- https://stackoverflow.com/questions/3208258
    memo1 f = index nats
      where
        nats = go 0 1
        go i s = Tree (go (i + s) s') (f i) (go (i + s') s')
          where
            s' = 2 * s
        index (Tree l v r) i
            | i < 0 = f i
            | i == 0 = v
            | otherwise = case (i - 1) `divMod` 2 of
                (i', 0) -> index l i'
                (i', 1) -> index r i'
    
    memo2 f = memo1 (memo1 . f)
    
    blink = memo2 blink'
      where
        blink' c n
            | c == 0 = 1
            | n == 0 = blink c' 1
            | even digits = blink c' l <> blink c' r
            | otherwise = blink c' $ n * 2024
          where
            digits = succ . floor . logBase 10 . fromIntegral $ n
            (l, r) = n `divMod` (10 ^ (digits `div` 2))
            c' = pred c
    
    doBlinks n = getSum . mconcat . fmap (blink n)
    part1 = doBlinks 25
    part2 = doBlinks 75
    
    main = getContents >>= print . (part1 &&& part2) . fmap read . words
    

  • Haskell

    import Control.Arrow
    import Control.Monad.Reader
    import Data.Array.Unboxed
    import Data.List
    
    type Pos = (Int, Int)
    type Board = UArray Pos Char
    type Prob = Reader Board
    
    parse :: String -> Board
    parse s = listArray ((1, 1), (n, m)) $ concat l
      where
        l = lines s
        n = length l
        m = length $ head l
    
    origins :: Prob [Pos]
    origins =
        ask >>= \board ->
            return $ fmap fst . filter ((== '0') . snd) $ assocs board
    
    moves :: Pos -> Prob [Pos]
    moves pos =
        ask >>= \board ->
            let curr = board ! pos
             in return . filter ((== succ curr) . (board !)) . filter (inRange (bounds board)) $ fmap (.+. pos) deltas
      where
        deltas = [(1, 0), (0, 1), (-1, 0), (0, -1)]
        (ax, ay) .+. (bx, by) = (ax + bx, ay + by)
    
    solve :: [Pos] -> Prob [Pos]
    solve p = do
        board <- ask
        nxt <- concat <$> mapM moves p
    
        let (nines, rest) = partition ((== '9') . (board !)) nxt
    
        fmap (++ nines) $ if null rest then return [] else solve rest
    
    scoreTrail = fmap (length . nub) . solve . pure
    scoreTrail' = fmap length . solve . pure
    
    part1 = sum . runReader (origins >>= mapM scoreTrail)
    part2 = sum . runReader (origins >>= mapM scoreTrail')
    
    main = getContents >>= print . (part1 &&& part2) . parse
    

  • Haskell

    Quite messy

    {-# LANGUAGE LambdaCase #-}
    
    module Main where
    
    import Control.Applicative
    import Control.Arrow
    import Control.Monad
    import Control.Monad.ST
    import Control.Monad.Trans
    import Control.Monad.Trans.Maybe
    import Data.Array.ST
    import Data.Array.Unboxed
    import Data.Char
    import Data.List
    import Data.Maybe
    
    parse = zip ids . fmap digitToInt . takeWhile (/= '\n')
    
    ids = intersperse Nothing $ Just <$> [0 ..]
    
    expand :: [(a, Int)] -> [a]
    expand = foldMap (uncurry $ flip replicate)
    
    process l = runSTArray $ do
        arr <- newListArray (1, length l) l
        getBounds arr >>= uncurry (go arr)
      where
        go arr iL iR = do
            (iL', iR') <- advance arr (iL, iR)
            if iL' < iR'
                then swap arr iL' iR' *> go arr iL' iR'
                else return arr
    
    swap arr i j = do
        a <- readArray arr i
        readArray arr j >>= writeArray arr i
        writeArray arr j a
    
    advance arr (h, t) = (,) <$> advanceHead arr h <*> advanceTail arr t
      where
        advanceHead arr i =
            readArray arr i >>= \case
                Nothing -> return i
                _ -> advanceHead arr (succ i)
    
        advanceTail arr i =
            readArray arr i >>= \case
                Nothing -> advanceTail arr (pred i)
                _ -> return i
    
    checksum = sum . zipWith (*) [0 ..]
    
    process2 l = runSTArray $ do
        let idxs = scanl' (+) 1 $ snd <$> l
            iR = last idxs
        arr <- newArray (1, iR) Nothing
        forM_ (zip idxs l) $ \(i, v) -> writeArray arr i (Just v)
    
        runMaybeT $ go arr iR
    
        return arr
      where
        go :: MArr s -> Int -> MaybeT (ST s) ()
        go arr iR = do
            (i, sz) <- findVal arr iR
    
            (findGap arr sz 1 >>= move arr i) <|> return ()
    
            go arr $ pred i
    
    type MArr s = STArray s Int (Maybe (Maybe Int, Int))
    
    findGap :: MArr s -> Int -> Int -> MaybeT (ST s) Int
    findGap arr n i = do
        mx <- lift $ snd <$> getBounds arr
        guard $ i <= mx
        ( do
                Just (Nothing, v) <- lift (readArray arr i)
                guard $ v >= n
                hoistMaybe $ Just i
            )
            <|> findGap arr n (succ i)
    
    findVal :: MArr s -> Int -> MaybeT (ST s) (Int, Int)
    findVal arr i = do
        guard $ i >= 1
        lift (readArray arr i) >>= \case
            Just (Just _, sz) -> hoistMaybe $ Just (i, sz)
            _ -> findVal arr $ pred i
    
    move arr iVal iGap = do
        guard $ iGap < iVal
    
        Just (Nothing, gap) <- lift $ readArray arr iGap
        v@(Just (Just _, sz)) <- lift $ readArray arr iVal
        lift . writeArray arr iVal $ Just (Nothing, sz)
        lift $ writeArray arr iGap v
    
        when (gap > sz) . lift . writeArray arr (iGap + sz) $ Just (Nothing, gap - sz)
    
    part1 = checksum . catMaybes . elems . process . expand
    part2 = checksum . fmap (fromMaybe 0) . expand . catMaybes . elems . process2
    
    main = getContents >>= print . (part1 &&& part2) . parse